0 Daumen
489 Aufrufe

Ist die Antisymmetrie bei einer zweistelligen Relation schon widerlegt, wenn yRx bzw. (y,x) gar nicht Teil der Relation ist?

Z.B.: Relation ist ">" auf Z={1,2} 

2>1 wahr     (xRy)

1>2 falsch    (yRx)

Avatar von

1 Antwort

+1 Daumen
 
Beste Antwort

Hallo hjh,

G sei die Grundmenge der Relation R, also R ⊂ GxG.

> Ist die Antisymmetrie bei einer zweistelligen Relation schon widerlegt, wenn yRx bzw. (y,x) gar nicht Teil der Relation ist?

Nein, keine Antisymmetrie liegt nur dann vor , wenn für mindestens ein Paar (x,y) ∈ GxG  gilt:

 (x,y) ∈ R  und (y,x) ∉ R.

INFO:    https://de.wikipedia.org/wiki/Antisymmetrische_Relation

Gruß Wolfgang

Avatar von 86 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community