Ich verstehe nicht, wie man aus den einzelnen Gleichungen den Eigenvektor erhält? Hier 3 Beispiele:
Beispiel1:
-x1 + 3x2 = 0 ergibt ex1 (3;1)T
9x1 + 3x2 = 0 ergibt ex2 (1;-3)T
Beispiel 2:
-x1 -x2 = 0 ergibt ex1 (1;-1)T
x1 + x2 =0 ergibt ex2 (1;1)T
Beispiel 3:
-x1 -3x2 = 0 ergibt ex1 (-3;1)T
9x1 -3x2 = 0 ergibt ex2 (1;3)T
Die oben genannten Ergebnisse stimmen soweit. Aber ich weiß einfach nicht, welches Schema ich hier anwenden soll, damit ich immer auf diese Einheitsvektoren komme. Ich versuche mal meine derzeitige, für mich logische Denkweise, aufzuschreiben:
Bsp. 1:
-x1 + 3x2 = 0 -> x1=3x2
für x1 eingesetzt gilt: -3x2 + 3x2 = 0 -> da kein Wert vorhanden, setze ich 1 ein. Somit ex1 (3;1)T OK!
x1 + x2 =0 ->x1=-x2
wenn ich also für x1=1 einsetzte müsste x2 = -1 sein. Ist es aber nicht!
Bsp. 2:
-x1 -x2 = 0 -> x1=-x2
für x1 eingesetzt gilt: +x2-x2=0 -> wenn ich für x2 = 1 einsetze, kommt man auf 0. Wenn ich nun x2 = 1 wähle, müsste die Gleichung dann -x1-1=0 sein. Somit müsste x1 = -1 sein. Dies stimmt aber auch nicht!
x1 + x2 =0 -> x1=x2:
Wenn ich für x1 = 1 einsetze, dann ergibt x2 =1. OK!
Bsp. 3:
-x1-3x2 = 0 -> x1= -3x2
wenn ich dies für x1 einsetze, gilt: +3x2 - 3x2 = 0; Für x2 = 1 stimmt das Ergebnis. Dies setzte ich in die Gleichung ein: -x1-3=0 ->x1 = -3. OK!
9x1-3x2 = 0 -> x1 = (1/3)x2
wenn ich dies für x1 einsetze, erhalte ich 3x2-3x2 = 0. Für x2 = 1 stimmt das Ergebnis. Aber auch hier stimmt die Lösung nicht.
Ich hoffe mir kann jemand sagen, was ich falsch mache.