Folgendes Problem beschäftigt mich:
Sei die Matrix \( \begin{pmatrix} 1 & 5 \\ 3 & 3 \end{pmatrix} \) gegeben. Die Eigenwerte dieser Matrix sind \( λ_1 = -2 \) und \( λ_2 = 6 \). Die Gleichungssysteme für \( λ_1 \) sind also:
I) 3x + 5y = 0 II) 3x + 5y = 0
Wieso entscheide ich mich für die Lösung x=-5 und y=3 und nicht für x=5 und y=-3 OHNE vorher zu wissen, dass erstere Lösung ein Eigenvektor ist und zweitere nicht?
:)
Ein anderes Problem?
Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos