"Sind alle Elemente der Grundmenge für die Aufgabe relevant? Und warum?"
Allein die Frage ist nicht klug gestellt. Natürlich macht es beim Lotto einen Unterschied in der Aufgabe ob ich aus 49 Kugeln oder aus 52 Kugeln ziehe. Allein die Anzahl der Grundelemente ist also relevant. Und das nicht nur für die Permutation.
Die Permutation ist (auch) ein Spezialfall des Ziehen ohne Zurücklegen und mit Beachtung der Reihenfolge. Und zwar, wenn alle Elemente gezogen werden.
Meist ist es aber nicht schön, das über ein Ziehen zu betrachten sondern einfach als Anzahl Möglichkeiten eine Anzahl von Objekten in eine bestimmte Reihenfolge zu bringen.
Hier ein Auszug aus Wikipedia:
Unter einer Permutation (von lateinisch permutare ‚vertauschen‘) versteht man in der Kombinatorik eine Anordnung von Objekten in einer bestimmten Reihenfolge. Je nachdem, ob manche Objekte mehrfach auftreten dürfen oder nicht, spricht man von einer Permutation mit Wiederholung oder einer Permutation ohne Wiederholung. Die Anzahl der Permutationen ohne Wiederholung ergibt sich als Fakultät, während die Anzahl der Permutationen mit Wiederholung über Multinomialkoeffizienten angegeben wird.