a) \(\ln(e)=1\)
b) \(\ln(e^3)=3\ln(e)=3\)
c) \(\ln(1)=0\)
d) \(\ln\left(\sqrt{e}\right)=\ln\left(e^\frac{1}{2}\right)=\frac{1}{2}\ln(e)=\frac{1}{2}\)
e) \(\ln\left(\frac{1}{e^2}\right)=\ln\left(e^{-2}\right)=-2\ln(e)=-2\)
f) \(e^{\ln(4)}=4\)
g) \(3\ln\left(e^2\right)=3\cdot 2\ln(e)=6\)
h) \(e^{2\ln(3)}=e^{\ln\left(3^2\right)}=e^{\ln(9)}=9\)
i) \(e^{\frac{1}{2}\ln(9)}=e^{\ln\left(9^\frac{1}{2}\right)}=e^{\ln\left(\sqrt{9}\right)}=e^{\ln(3)}=3\)
j) \(\ln\left(e^{3,5}\cdot \sqrt{e}\right)=\ln\left(e^{3,5}\right)+\ln\left(\sqrt{e}\right)=3,5+\frac{1}{2}=4\)
k) \(e^{\ln(2)+\ln(3)}=e^{\ln(2)}\cdot e^{\ln(3)}=2\cdot 3=6\)
m) \(\ln\left(e\cdot 5\sqrt{e}\right)=\ln(e)+\ln(5)+\ln\left(\sqrt{e}\right)=1+\ln(5)+\frac{1}{2}=\ln(5)+\frac{3}{2}\)
Was soll das bei n) im letzten Summanden sein?