0 Daumen
628 Aufrufe

Bekanntlich ist der Polynomring R[x1], mit R ein Integritätsrings, wieder ein Integritätsring. Somit ist R[x1; x2] := R[x1][x2] wieder ein Integritätsring (f ∈ R[x1][x2] ist ein Polynom in x2 mit Koeffizienten Polynome aus R[x1]), und induktiv definiert man R[x1;...; xn] := R[x1;...; xn-1][xn]. Durch ausmultiplizieren kann man  f ∈ R[x1;...; xn] als Summe f = Σ cαxα schreiben, wobei  xα := ∏n i=1 xiαi  mit α = ( α1;...; αn) ∈ ℕn, und cα ∈ R (nur endlich viele der cα seien ungleich 0). Wenn |α| := Σn i=1 αi , dann ist der Grad von f gleich max{|α| : cα ≠ 0}.


Man zeige: für homogene Polynome f ≠ 0 und g ≠ 0 vom Grad d bzw. e ist fg ein homogenes Polynom vom Grad d + e (warum gilt fg ≠ 0?).

Avatar von

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community