Würde aber gerne den Rechenschritt haben:
Mein Ansatz bisher:
h*2*(20-2h/(2+π)) + 1/2*π*(20-2h/(2+π))^2
2*h*(20-2h/(2+π))+ 1/2π*(20-2h/2+π))^2
40h-4h^2/(2+π) + 1/2π*((20-2h)^2/(2+π)^2
= 40 h- 4h^2/(2+π) + 1/2π*(400-80h+4h^2/4+4π+π^2)
= 40 h - 4h^2/(2+π) + 200π-40hπ+2π+h^2/4+4π+π^2
= 40 - 4h/(2+π) + 200-40+2h/(4+4+π^2)
= 40-4h+200-40+2h/2+π+4+4+π^2
=> das pi im Nenner gekürzt
=200-2h/(10+π)
=100-h/(5+1/2π)