Wenn Lagrange nicht verlangt ist:
\(K(x,y,z) = 2x^2 + y^2 - 2xz + 3z \), soll minimal werden.
1. NB: \(x-y+z = 2\) mit \(x=\red{3}\): \(3-y+z = 2\) \(z =y-1 \)
2. NB: \(x+y-z = 4\) → \(y = 4-x+z\) in 1. NB:
\(x-(4-x+z)+z = 2\) → \(x=\red{3}\)
\(K(y,z) =18 + y^2 - 3z \)
\(K(y) =24+ y^2 - 3y \)
\(K_y(y) = 2y - 3 \) \( 2y - 3=0 \) \( y=1,5 \) \(z =1,5-1=0,5 \)