f(x) = - x^3 + 20·x^2
f'(x) = 40·x - 3·x^2
f''(x) = 40 - 6·x
k(x) = x^3 - 13·x^2 + 40·x
k'(x) = 3·x^2 - 26·x + 40
k''(x) = 6·x - 26
Extremstellen f'(x) = 0
40·x - 3·x^2 = 0
x = 40/3 ∨ x = 0
f''(40/3) = -40 --> Hochpunkt
f(40/3) = 32000/27 = 1185.185185
f''(0) = 40 --> Tiefpunkt
f(0) = 0
Extremstellen k'(x) = 0
3·x^2 - 26·x + 40 = 0
x = 20/3 ∨ x = 2
k''(20/3) = 14 --> Tiefpunkt
k(20/3) = - 400/27 = -14.81481481
k''(2) = -14 --> Hochpunkt
k(2) = 36
Skizze