Vielen lieben Dank für deine Antwort, eigentlich eh ganz einfach!
Zu b.) hab ich auch noch eine Frage, kann ich so argumentieren: Wenn ich zeigen will, dass Uv unter A invariant ist, dann muss ich doch zeigen, dass ein Element angewandt auf A wieder im Unterraum Uv liegt. Das heißt ich nehme einen beliebigen Vektor aus Uv her, irgendeine Linearkombination, sei diese c. Und wende diese auf A an, das heißt: A*c --> da das Distributivgesetz und das Assoziativgesetz gilt, kann man das A in den Ausdruck rein multiplizieren und man erhält wieder einen Ausdruck aus Uv. v ist logischerweise drinnen und es ist auch der kleinste wegen der Minimums Eigenschaften von m.