Ich weiß nicht, was das mit einem Konfidenzintervall zu tun hat, würde es aber gerne wissen:
Wie hoch ist die Wahrscheinlichkeit einen Festivalgänger zufällig auszuwählen der pro Tag
weniger als 4.9 Liter trinkt?
Gegeben ist \(\mu=9.4\) und \(\sigma=3.6\). Wir suchen die Wahrscheinlichkeit für \(P(X>4.9)\). Das geht wie folgt:$$P(X>4.9)≈ \Phi\left(\frac{4.9-9.4}{3.6}\right)$$$$P(X>4.9)≈ \Phi(-1.25) \quad ⇒ P(X>4.9)≈1- \Phi(1.25)$$Den Wert für \(\Phi(1.25)\) in einer Tabelle nachschlagen ergibt:$$P(X>4.9)≈1- 0,89435$$$$P(X>4.9)≈ 0.10565≈ 10.565\%$$
Wie hoch ist die Wahrscheinlichkeit einen Festivalgänger zufällig auszuwählen der pro Tag
zwischen 4.1 und 5.3 Liter trinkt
Das ist der Ansatz, den Rest schaffst du selbst:$$P(4.1≤X≤5.3)=\Phi\left(\frac{5.3-9.4}{3.6}\right)-\Phi\left(\frac{4.1-9.4}{3.6}\right)$$