Auf zwei Maschinen A und B wird Tee abgepackt. Auf Stichprobenbasis soll nach-
gewiesen werden, dass die Maschine A mit einem größeren durchschnittlichen Füll-
gewicht arbeitet als die Maschine B (α = 0.01).
a) Man weiß, dass die Füllgewichte der beiden Maschinen annähernd normalver-
teilt sind mit σ^2A = 49g und
σ^2B = 25g. Eine Zufallsstichprobe vom Umfang
nA = 12 aus der Produktion der Maschine A liefert ein durchschnittliches
Füllgewicht von xA = 140g. Eine Zufallsstichprobe aus der Produktion der
Maschine B vom Umfang nB = 10 ergibt ein durchschnittliches Füllgewicht
vonxA = 132g. Führen Sie einen geeigneten Test durch.
b) Die Varianzen seien nun unbekannt, aber man kann davon ausgehen, dass sie
gleich sind. Man erhält als Schätzungen der Standardabweichungen sA = 5
und sB = 4.5. Führen Sie mit den Resultaten aus a) einen geeigneten Test
durch.
es geht mir speziell um b)
undzwar was der kritischer Wert ist der zur Ablehnung der H0 Hypothese führt.