Ich würde mal von den Ableitungen ausgehen
z.B. die 4-te hat den Nenner 16*x^{9/2} = 2^4 * x^{4+0,5}
Das passt auch bei der 3. und der 2. also könnte man wohl es wohl mit
Induktion auf alle n übertragen.
Der Zähler 105 = 1*3*5*7 = 7! / ( 2*3!) und bei der 3. Ableitung
15 = 1*2*3 = 3! / ( 2*2!)
allgemein also wohl (2n-1)! / ( 2* (n-1)! ) .
also f^n(x) = (-1)^n * ( (2n-1)! / ( 2* (n-1)! ) ) / ( 2^n * x^{n+0,5} )