$$F(x)= \frac{1000}{1+x}+\frac{30002}{(1+x)^2} +\frac{5000}{(1+x)^5} $$
Überprüfen Sie die Stetigkeit der Funktion an der Stelle x=0,02
Brauche Hilfe
du kannst x=0.02 einfach in die Funktion einsetzen. Also ist die Funktion dort stetig. Die einzige Problemstelle ist x=-1.
Wenn du es beweisen sollst, dann nimm z.B das Folgen Kriterium.
Also muss ich sozusagen den rechtsseitigen und linksseitigen Grenzwert berechnen?
Hallo
was für Sätze oder Beweise habt ihr denn? das ist die Summe stetiger Funktionen, ausser bei x=-1.
sonst benutze die Folgenstetigkeit
Gruß lul
Ein anderes Problem?
Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos