0 Daumen
1,2k Aufrufe

Aufgabe:
f: R → R 
(x,y) ↦ ( x+y , 2x , 0 ) 

Was ich weiss:
Eine Abbildung ist linear, wenn (a) und (b) gelten:

(a) f(u+v) = f(u) + f(v) 
(b) f(α*u) = α*f(u) 

Ich wollte es zeigen indem ich zwei beliebige Vektoren x und y mit jeweils ihren Komponenten nehme und nach obigem Schema für (a) das Beispiel nachweise, aber ich weiss nicht wie mein x-Vektor und mein y-Vektor aussieht. 

x = (x1, y1) 
y = (x2, y2)


Dann würde ich sagen dass f(x+y) = f(x) + f(y) ist.

Frage
Bin ich korrekt mit der Annahme dass anstatt u und v ich die Vektoren x und y so schreiben kann wie oben ?
Oder soll ich beide Vektoren so wählen:

x = (x1, x2)
y = (y1, y2)




Avatar von

1 Antwort

0 Daumen

Ich denke, sofern das richtig ist, hat es sich erledigt:

Scannable-Dokument am 13.11.2018, 21_09_19.png


Scannable-Dokument 2 am 13.11.2018, 21_09_19.png
EDIT(Lu): Eigenleistung in Antwort umgewandelt.

Avatar von

Das sieht doch ganz gut aus.

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community