f(x) = LN(x) / x
f'(x) = (1 - LN(x))/x^2
f''(x) = (2·LN(x) - 3)/x^3
Streng monoton steigend f'(x) ≥ 0
(1 - LN(x))/x^2 ≥ 0 --> 0 < x ≤ e
Streng monoton fallend f'(x) ≤ 0
(1 - LN(x))/x^2 ≤ 0 --> x ≥ e
Konvex f''(x) ≥ 0
(2·LN(x) - 3)/x^3 ≥ 0 --> x ≥ e^(3/2) = 4.482
Damit gehört nur die 6 in den Bereich.
Skizze
~plot~ ln(x)/x;[[-1|8|-0.4|0.4]] ~plot~