Aufgabe:
Ein zu konstruierender Roboter soll sich auf einer Geraden vom Punkt A zum Punkt B bewegen. Wir identifizieren die Gerade durch A und B mit den reellen Zahlen. Der Geradenpunkt des zu konstruierenden Roboters zur Zeit \( t \in \mathbb{R} \) sei mit \( x(t) \) bezeichnet. Aus Konstruktionsgründen ergibt sich die Einschränkung: Für alle Zeiten \( t \) gilt
\( \left|x(t)^{2}-9\right| \geq 11 \)
Der Entwickler behauptet: Der Roboter kann sich nicht von \( A=-30 \) nach \( B=40 \) bewegen. Eine Bewegung von \( A=30 \) nach \( B=40 \) oder von \( A=-30 \) nach \( B=-40 \) ist aber vielleicht möglich. Wie kommt der Entwickler zu seinen Aussagen?
Ansatz:
Man muss denke ich etwas mit der geradengleichung anfangen.