Aufgabe:
Prufen Sie die folgenden Vektoren auf lineare Abhängigkeit bzw. Unabhängigkeit!
a) $$\left( \begin{array} { l } { 1 } \\ { 0 } \\ { 1 } \end{array} \right) , \left( \begin{array} { l } { 0 } \\ { 2 } \\ { 1 } \end{array} \right) , \left( \begin{array} { c } { - 1 } \\ { 3 } \\ { - 1 } \end{array} \right)$$
$$\left\langle \left( \begin{array} { c } { 1 } \\ { 0 } \\ { 1 } \end{array} \right) , \left( \begin{array} { l } { 0 } \\ { 2 } \\ { 1 } \end{array} \right) , \left( \begin{array} { c } { - 1 } \\ { 3 } \\ { - 1 } \end{array} \right) \right\rangle$$
Problem/Ansatz:
Der Zweite Teil mit dem Bestimmen Sie <> Ich habe dies als Spann interpretiert... Wäre dies dann einfach:
x(Vektora).y(Vektorb),z (Vektorc)
Es wäre lieb wenn mir wer weiter helfen kann.. ich verstehe noch nicht so richtig was da von mir gewollt wird.