Aufgabe:
Gegeben sind die Standardbasis E vonR^2 und die Basis B von R^3 definiert durch
$$E : \left( \begin{array} { l } { 1 } \\ { 0 } \end{array} \right) , \left( \begin{array} { l } { 0 } \\ { 1 } \end{array} \right) \quad \text { und } \quad B : \left( \begin{array} { c } { - 2 } \\ { 0 } \\ { 4 } \end{array} \right) , \left( \begin{array} { c } { 2 } \\ { - 7 } \\ { - 4 } \end{array} \right) , \left( \begin{array} { c } { 0 } \\ { 0 } \\ { - 2 } \end{array} \right)$$
Weiterhin sei die folgende lineare Abbildung gegeben.
$$f : \mathbb { R } ^ { 2 } \rightarrow \mathbb { R } ^ { 3 } : \left( \begin{array} { c } { x } \\ { y } \end{array} \right) \mapsto \left( \begin{array} { c } { - 14 x + 2 y } \\ { - 7 y } \\ { 28 x } \end{array} \right)$$
Bestimmen Sie die Abbildungsmatrix von f bezüglich den BasenE und B.