Aufgabe:
Mit den Vektoren
\( \mathbf{v}_{1}=\left(\begin{array}{c} 1 \\ -1 \end{array}\right), \mathbf{v}_{2}=\left(\begin{array}{c} 2 \\ -1 \end{array}\right) \in \mathbb{R}^{2} \)
und
\( \mathbf{w}_{1}=\left(\begin{array}{l} 1 \\ 1 \\ 1 \end{array}\right), \mathbf{w}_{2}=\left(\begin{array}{l} 1 \\ 2 \\ 2 \end{array}\right), \mathbf{w}_{3}=\left(\begin{array}{c} -1 \\ 0 \\ 1 \end{array}\right) \in \mathbb{R}^{3} \)
sei die lineare Abbildung \( T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3} \) definiert durch
\( T \mathbf{v}_{1}=\mathbf{w}_{2}, \quad T \mathbf{v}_{2}=\mathbf{w}_{1}-2 \mathbf{w}_{3} . \)
a) Geben Sie die Abbildungsmatrix \( A \in \mathbb{R}^{3 \times 2} \) von \( T \) bezüglich der Basen
\( \mathcal{B}_{v}=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\} \quad \text { und } \quad \mathcal{B}_{w}=\left\{\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}\right\} \)
an.
Problem/Ansatz:
Ich verstehe nicht, wie ich vorzugehen habe bei der Aufgabe.
Danke im voraus.