√(4·x - 3) + √(5·x + 1) = √(15·x + 4)
(4·x - 3) + 2·√(4·x - 3)·√(5·x + 1) + (5·x + 1) = 15·x + 4
2·√(4·x - 3)·√(5·x + 1) = 15·x + 4 - (4·x - 3) - (5·x + 1)
2·√(4·x - 3)·√(5·x + 1) = 6·x + 6
√(4·x - 3)·√(5·x + 1) = 3·x + 3
(4·x - 3)·(5·x + 1) = (3·x + 3)^2
20·x^2 - 11·x - 3 = 9·x^2 + 18·x + 9
11·x^2 - 29·x - 12 = 0 --> x = -4/11 ∨ x = 3
Nur x = 3 ist Element der Definitionsmenge und damit in der Lösungsmenge.