0 Daumen
3,2k Aufrufe

Aufgabe:

Berechnen Sie den Inhalt der von den Graphen der Funktionen f und g begrenzten Fläche.

f(x) = 4x2 \frac{4}{x^2}

g(x) = -54 \frac{5}{4} x +214 \frac{21}{4}


Problem/Ansatz:

Ich habe zunächst die Schnittpunkte berechnet :

x1 = -0,8 , x2 =1 , x3 = 4

Dann muss ich ja mit der Differenzfunktion von -0,8 bis 1 und von 1 bis 4 integrieren.

Doch bei

0,81 \int\limits_{-0,8}^{1}  4x2 \frac{4}{x^2} -(-54 \frac{5}{4} x +214 \frac{21}{4} )dx 

0,81 \int\limits_{-0,8}^{1} 4x2 \frac{4}{x^2} 54 \frac{5}{4} x - 214 \frac{21}{4} dx

= [-x4 \frac{x}{4} 58 \frac{5}{8} x2 214 \frac{21}{4} x]-0.8

kommt bei keinem meiner Taschenrechner ein Ergebnis.

Avatar von 5,9 k

2 Antworten

+1 Daumen
 
Beste Antwort

Wenn du mal die Funktionen zeichnest.

Plotlux öffnen

f1(x) = 4/x2f2(x) = -5/4·x+21/4Zoom: x(-3…5) y(0…10)


f(x) hat an der Stelle x = 0 eine Definitionslücke.

Eigentlich bilden die Funktionen doch nur im Intervall von 1 bis 4 eine Fläche oder nicht?

Avatar von 491 k 🚀

Sind Definitionslücken GK relevant?

Ich habe gerade gelesen dass ich für eine Definitionslücke die Nullstellen des Nenners suchen muss

Also

x2 = 0

x = 0

Reicht das so schon ?

Ja. Definitionslücken sind relevant.

Und was deine Berechnung der Definitionslücke angeht ist das richtig. Einfach den Nenner 0 setzen und nach x auflösen.

Ich weiß zwar nicht wie man es berechnet aber das wäre jetzt eine Polstelle mit VZW oder?

*ohne ups hab mich vertippt

Ja, ohne.

Und eingeschlossen wird die Fläche ja n ur von 1 bis 4,

also integrierst du nur von 1 bis 4.

+1 Daumen

Du hast versucht, über die Polstelle x=0 hinweg zu integrieren.

Du benötigst im Intervall von -0,8 bis 1 die uneigentlichen Integrale von -0,8 bis "0" und von "0" bis 1.

Da wird aber keine endliche Fläche eingeschlossen. Wirklich echt eingeschlossen wird die Fläche nur zwischen 1 und 4.

Avatar von 56 k 🚀

Also gebe ich als Inhalt der Fläche nur von 1 bis 4 an.

Bin im GK und habe von uneigentlichen Integralen noch nie was gehört xd

Ein anderes Problem?

Stell deine Frage