f(x, y) = y^2/x + 2·y/x + x + 2/x
a)
Gradient
f'(x, y) = [1 - (y^2 + 2·y + 2)/x^2, (2·y + 2)/x] = [0, 0] --> (x = -1 ∧ y = -1) ∨ (x = 1 ∧ y = -1)
Hesse-Matrix
f''(x, y) = [2·(y^2 + 2·y + 2)/x^3, - 2·(y + 1)/x^2; - 2·(y + 1)/x^2, 2/x]
f''(-1, -1) = [-2, 0; 0, -2] → Maximum
f''(1, -1) = [2, 0; 0, 2] → Minimum
b)
f'(1, 0) = [-1, 2]
[-1, 2]*[-1, 2] / |[-1, 2]| = √5