0 Daumen
959 Aufrufe

Aufgabe:

Bestimmen Sie alle Extremwerte der Funktion und geben deren Typ an.

$$ f(x,y)=x^3-3x+\frac{2y^2}{x} $$


Ich benötige für diese Funktion noch die Ableitungen, um die Extremwerte bestimmen zu können.

Avatar von

Vom Duplikat:

Titel: Partielle Ableitungen bestimmen von f(x,y) = x³ - 3x + (2y²)/x

Stichworte: partielle-ableitung

$$ f( x , y ) = x ^ { 3 } - 3 x + \frac { 2 y ^ { 2 } } { x } $$

Ich benötige für diese Funktion noch Die Ableitungen um die Extremwerte bestimmen zu können.

Das wäre eine große Hilfe.

3 Antworten

+1 Daumen

partielle Ableitungen bilden und 0 setzen

4y/x = 0   ==>    y=0

3x^2 -2y^2/x  - 3 = 0    und  y=0 ==>   3x^2 -3 = 0 ==>   x=1 oder x=-1

Also sind (1;0) und (-1;0)  die kritischen Punkte.

Avatar von 289 k 🚀
+1 Daumen

fx = 3 x^2 - 3 -(2 y^2)/x^2

fxx= (4 y^2)/x^3 + 6 x

fy= (4 y)/x

fyy= 4/x

fyx = -(4 y)/x^2 = fxy

Avatar von 121 k 🚀
+1 Daumen

https://www.wolframalpha.com/input/?i=extrema+x%5E3-3x%2B2y%5E2%2Fx

blob.png

Wo liegen denn genau Deine Schwierigkeiten? Ableiten kannst du?

Avatar von 489 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community