Benutze: \(cos^2(x) = \frac{1}{2}(cos(2x) + 1)\)
\( \int cos^2(x) dx = \int \frac{1}{2}(cos(2x) + 1) dx = \frac{1}{2} \int cos(2x) dx + \frac{1}{2} \int 1 dx\)
Löse: \(\frac{1}{2} \int 1 dx\)
\(\frac{1}{2} \int 1 dx = \frac{1}{2} x\)
Löse: \(\int cos(2x) dx\)
Substituiere: u = 2x
\(\int cos(u) du = \frac{1}{2}sin(u)\)
Mit Rücksubstitution: sin(2x)
Also ergibt sich:
\( \int cos^2(x) dx = \frac{sin(2x)}{4} + \frac{x}{2} + c\)