Wenn ich nun die Matrix $$ A :=\left( \begin{array}{cccc}{3} & {0} & {4} & {2} \\ {0} & {-3} & {-2} & {1} \\ {0} & {0} & {2} & {0} \\ {0} & {0} & {1} & {-3}\end{array}\right) $$ habe.
Hieraus folgen das charakteristische Polynom (a-3)(a-2)(a+3)^2 und die Eigenwerte a_1=3, a_2=2 , a_3=-3 und a_4=-3.
Außerdem sehen wir schnell das die alg.VFH für a_1 und a_2 gleich 1 ist und für a_3=-3 und a_4=-3. gleich 2.
Nun weiß ich aus dem Skript, dass gilt alg. VFH >= geo. VFH.
Daraus folgt trivialerweise die geo. VFH von a_1 und a_2 die gleich 1 ist.
Aber was ist mit a_3=-3 und a_4=-3?
Im Skript steht, man solle die Eigenräume bestimmen, aber was soll ich an den Eigenräumen den sehen? Der Eigenwert von a_3 und a_4 ist doch gleich, also sind die Eigenvektoren doch automatisch linear abhängig und daraus würde doch folgen geo. VFH 1 ist oder ?
Ich finde dieses Thema so unglaublich undurchsichtig, dagegen ist Analysis ein Kinderspiel :)
Kann mir Jemand erzählen /Zeigen, wie ich mit solchen Dingen umzugehen habe, ich sitze nun schon seit 5 h an der Aufgabe und habe das halbe Internet schon durchgeforstet, ich muss es unbedingt für die Klausur verstehen.
Liebe Grüße