Aufgabe:
Seien X und Y zwei unabhängige Zufallsvariablen mit Gleichverteilung 1,2,3,4,5,6. Definiere Z = \( \begin{pmatrix} X falls X gerade \\Y falls X ungerade \end{pmatrix} \)
Bestimmen Sie E(Z)
Problem/Ansatz:
Mir liegt die Lösung vor, jedoch kann ich Sie nicht ganz nachvollziehen. Der Erwartungswert ist klar gegeben durch die Formel: E(Z) = \( \sum\limits_{k=1}^{6}{k*P(z=k)} \). Nun kommt als Ergebnis folgendes raus:
= 1 * 1/12 + 2 * 1/6 + 3 * 1/12 + 4 * 1/6 + 5 * 1/12 + 6 * 1/6
= 9/12 + 12/6 = 33/12 = 2.75
Nun ist mir nicht klar, wie man auf die Wahrscheinlichkeiten kommt, also z.B. P(Z=1) = 1/12. Kann mir das vielleicht jemand erklären? Vielen Dank vorab!