0 Daumen
2,5k Aufrufe

Kann mir jemand das genau erklären. Ich habe mir zahlreiche Videos dazu angeschaut aber irgendwie verstehe ich es nach wie vor nicht ganz.

Avatar von

1 Antwort

0 Daumen

die Parametergleichung der Ebene \(\varepsilon\) hat die Form \(\varepsilon: \vec{x}=\vec{p}+\lambda\vec{u}+\mu\vec{v}\).

Hierbei ist \(\vec{p}\) der Ortsvektor (ein beliebiger Punkt auf der Ebene, z.B. A: \(\vec{p}=\begin{pmatrix} 3\\ 0\\ 2 \end{pmatrix}\)) \(\vec{u},\, \vec{v}\) die Richtungsvektoren. Diese erhältst du, wenn du jeweils zwei Punkte voneinander subtrahierst (sie müssen linear unabhängig sein). Also z.B. B-A und C-A.

Es ergibt sich für \(\vec{u}\) der Vektor \(\vec{u}=\overrightarrow{AB}=\begin{pmatrix} 2\\ -1\\ 5 \end{pmatrix}\) und für \(\vec{v}=\overrightarrow{AC}=\begin{pmatrix} -3\\ -2\\ -2 \end{pmatrix}\)

Avatar von 13 k

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community