Situation:
In einem meiner Skripts (Numerische Mathematik) steht folgendes geschrieben:
Die Menge aller auf einem beschränkten Intervall [a,b] p-mal stetig differenzierbaren Funktionen
$$ V = C ^ { p } ( [ a , b ] ).$$
(Für p=0 ist V die Menge der auf dem beschränkten Intervall [a,b] stetigen Funktionen.)
Frage:
Ich habe in einer früheren Frage hier geklärt wie man die Menge aller Funktionen von zb X nach Y bestimmt.
Hier ist der alte Post: https://www.mathelounge.de/610199
Nun ist die Frage,
(1) Was bedeutet stetig differenzierbar ?
(2) Gibt es Wege bei zwei gegebenen Mengen die Menge aller p-mal stetigdifferenzierbaren Funktioenen zu bestimmen?
Meine Idee
Ich denke, dass es generell Abbildungen von X nach Y gibt und wenn man sich eine bestimmte Abbildung, sagen wir mal die Abbildung f(x) davon auswählt und diese dann differenziert bekommt man f'(x).
So, wenn also f(x) die Abbildung ist und f'(x) die erste Ableitung von f(x) ist und eben f'(x) dann wiederum stetig ist, aber f''(x) unstetig ist,
dann heisst f(x) 1-mal stetig differenzierbar.
Wenn ich mit meiner Vermutung richtig liege,
dann gehört f(x) zu der Menge:
V = C1([a,b])
Kann jemand helfen ?
Ich habe im Internet und Wikipedia recherchiert aber nichts gefunden, was weiterhilft...