hallo
wie du schon geschrieben hast, der zweite fall ergibt keine lösung, bzw. eine leere lösungsmenge im reellen.
das ist weiter nicht tragisch, die gesamtlösung ist die vereinigungsmenge aller teillösungen.
|x²-2| <= 4-x
fallunterscheidung
1) wenn x²-2 >= 0 ist, dann ist der betrag von x²-2 = x²-2
2) wenn x²-2 < 0 ist, dann ist der betrag von x²-2 = -(x²-2) = -x²+2
1)
x²-2 <= 4-x
x²-2-4+x <= 0
x²+x-6 <= 0
x1, x2 <= -1/2 +- √(1/4+24/4)
x1, x2 <= -1/2 +- 5/2
x1 <= 2, x2 <= -3
also -3 <= x <= 2
2)
-x²+2 <= 4-x
-x²+2-4+x <= 0
-x²+x-2 <= 0
x²-x+2 >= 0
x1, x2 <= 1/2 +- √(1/4-8/4)
x1, x2 <= 1/2 +- √(-7/4)
lösung ist im reellen die leere menge x = {}, weil diskriminante < 0
die lösung ist die vereinigungsmenge aller teillösungen.
das ist die vereinigungsmenge von -3 <= x <= 2 und von x = {}.
die vereinigungsmenge ist L={x| -3 <= x <= 2 }