Aufgabe:
Consider the vector space V of all continous functions V = C([0, 1]) = { f : [0, 1] → ℝ | continous},
and consider the following defnition of scalar product on V:
$$ <f,g> = \int\limits_{0}^{1} f(t)g(t)dt$$
Compute ||f||, ||g||, ||f-g|| for \(f(x)=2x\) and \(g(x)=x^2+x+1\) (Es soll die Norm sein)
Problem/Ansatz:
Muss die Norm nicht definiert sein? Nehme ich die ||.||2 Norm oder die Absolut Norm weil f auf den Raum ℝ abbildet? In allen vorheringen Aufgaben wurde immer eine Norm definiert. Sollte ich die Norm aus der Aufgabenstellung rausfühlen?