f(x) = x^2·e^{-x}
f'(x) = e^{-x}·(2·x - x^2)
f''(x) = e^{-x}·(x^2 - 4·x + 2)
Extremstellen f'(x) = 0
2·x - x^2 = 0
x = 2 ∨ x = 0
f(0) = 0
f(2) = 4/e^2 = 0.5413411329
Wendestellen f''(x) = 0
x^2 - 4·x + 2 = 0
x = 2 ± √2
x = 3.414213562 ∨ x = 0.5857864376
f(3.414213562) = 0.3835369905
f(0.5857864376) = 0.1910182260
Skizze: