Aufgabe:
Seien n € N und A;B €R^nxn. Beweisen oder widerlegen Sie die folgenden Aussagen.
a) Ist AB invertierbar, dann ist auch BA invertierbar.
b) Es gilt Rang(AB) = Rang(BA).
c) Es gilt det(A + B) = det(A) + det(B).
d) Ist A eine Projektion, d.h. es gilt A2 = A, dann ist entweder A nicht invertierbar
oder A die Einheitsmatrix.
e) Ist A schiefsymmetrisch, d.h. es gilt A = A>, dann ist A nicht invertierbar oder n
gerade.
Problem/Ansatz:
Kann mir eventuell einer eklären was n € N und A;B € R^nxn bedeutet?
Kann man diese Aussagen mit einfach 2x2 Matrizen beweisen?