0 Daumen
2,2k Aufrufe

Sei A = {1, 2, ... , 6} × {1, 2, ... , 6} die Menge aller Ergebnisse beim Würfeln von einem roten und einem grünen Würfel (rot die erste und grün die zweite Zahl).

Über A sind drei Äquivalenzrelationen ~, ≅, ≈ wie folgt definiert:

a) (a, b) ~ (c, d) ⇔ |a - b| = |c - d|

b) (a, b) ≅ (c, d) ⇔ (a + b) ≡ (c + d) mod 7

c) (a, b) ≈ (c, d) ⇔ a · b = c ·d

Bestimmen Sie für diese drei Äquivalenzrelationen jeweils die Anzahl der Äquivalenzklassen sowie ein Repräsentantensystem und geben Sie für jeden Repräsentanten die Größe seiner Äquivalenzklasse an.

Avatar von

1 Antwort

0 Daumen

Mal zur ersten Äquivalenzrelation:   

Wenn man alles in einer 36*36-Matrix aufschreibt, sieht man, dass betragsmässig 6 verschiedene Differenzen vorkommen. 0, 1,2,3,4,5

    11 12 13 14 15 16 21 22 23 24 25 26 31 32 33 34 35 36 41 42 43 44 45 46 51

11      0                                    0                                      0                                     0                 

12           1                           1         1                          1      1                            1         1

13               2                                     2                  2                2                  2                  2

14                      3                                     3                                       3                                      

15                           4                                      4                                                                    4

16                               5

 

Etwas übersichtlicher ist eine 6*6-Matrix. Hier sind die Äquivalenzklassen farbig hervorgehoben. 

  1 2 3 4 5 6
1 0 1 2 3 4 5
2 1 0 1 2 3 4
3 2 1 0 1 2 3
4 3 2 1 0 1 2
5 4 3 2 1 0 1
6 5 4 3 2 1 0

(1,1), (1,2), (1,3),(1,4), (1,5), (1,6) wären Repräsentanten der 1 Äquivalenzklassen.

Zugehörige Grössenangaben der Reihe nach

6,       10,    8,        6,   4,            2

 

Bei b) und c) analog vorgehen erst mal die Summen modulo 7 resp. die Produkte der Augenzahlen berechnen.

Abgekürzt direkt in der 6*6-Matrix, Äquivalenzklassen und Repräsentanten bestimmen und dann noch die Elemente der Klassen zählen. Kontrolle: Total sollte 36 rauskommen.

Avatar von 162 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community