ich wäre euch wirklich dankbar, wenn mir vielleicht jemand erklären könnte wie dieses LGS aussehen soll:)
Trapezsumme T(h) für das Integral I(f)=\( \int\limits_{0}^{\frac{\pi}{2}} \cos(x) dx \)
Hier soll aber die Euler-Maclaurin-Formel untersucht werden, hier umgeschrieben zu
\(T(h)= \sum\limits_{j=0}^{p}{c_jh^{2j}} + E_{2p+2}(h) \)
-Wähle p= 3
-p + 1 Maschenweiten h1, . . . , hp+1 – in dieser Aufgabe, indem wir das IntegrationsIntervall [0, π/2] in N1 = 1, N2 = 2, N3 = 4 und N4 = 8 Teilintervalle unterteilen,
- igoniere E2p+2
Berechne nun die Koeffizienten \( \tilde{c_j}\) :
\(T(h_i)= \sum\limits_{j=0}^{p}{\tilde{c_j}h_i^{2j}} \) für \( 1 \leq i \leq p+1\).
Gebe die Koeffizientenmatrix, rechte Seite und Lösung des LGS an und die berechneten Werte.