Definition: sum of subsets $$\begin{array}{l}{\text { Suppose } U_{1}, \ldots, U_{m} \text { are subsets of } V . \text { The sum of } U_{1}, \ldots, U_{m}, \text { denoted }} \\ {U_{1}+\cdots+U_{m}, \text { is the set of all possible sums of elements of } U_{1}, \ldots, U_{m}} \\ {\text { More precisely, }} \\ {\qquad U_{1}+\cdots+U_{m}=\left\{u_{1}+\cdots+u_{m} : u_{1} \in U_{1}, \ldots, u_{m} \in U_{m}\right\}}\end{array}$$
Example:
Suppose that $$U=\left\{(x, x, y, y) \in \mathbf{F}^{4} : x, y \in \mathbf{F}\right\}$$ and $$W=\left\{(x, x, x, y) \in \mathbf{F}^{4} : x, y \in \mathbf{F}\right\}.$$ Then, $$ U+W=\left\{(x, x, y, z) \in \mathbf{F}^{4} : x, y, z \in \mathbf{F}\right\}$$ as you should verify.
Problem:
Ich habe für U + W etwas andere erhalten und zwar, $$ U+W=\left\{(2x, 2x,2y, y+z) \in \mathbf{F}^{4} : x, y, z \in \mathbf{F}\right\}$$
Weil ich stur nach der Definition oben (sum of subsets) die Summe von einem Vektor u aus \(U\) mit einem Vektor w aus \(W\) gebildet habe:
u + w = \( \begin{pmatrix} x\\x\\y\\y \end{pmatrix} \) + \( \begin{pmatrix} x\\x\\y\\z \end{pmatrix} \) = \( \begin{pmatrix} x+x\\x+x\\y+y\\y+z \end{pmatrix} = \begin{pmatrix} 2x\\2x\\2y\\y+z \end{pmatrix} \Longrightarrow U+W = \{ \begin{pmatrix} 2x\\2x\\2y\\y+z \end{pmatrix} \in \mathbf{F}^{4} : x,y,z \in \mathbf{F} \}. \)
Frage:
Was habe ich falsch gemacht ?