Aloha :)
Mit \(x=\tan u\) und \(\frac{dx}{du}=\frac{1}{\cos^2u}=1+\tan^2u\) reduziert sich das Integral zu:$$\int\frac{1}{(1+x^2)^2}\,dx=\int\frac{1}{(1+\tan^2u)^2}\cdot(1+\tan^2u)du=\int\frac{du}{1+\tan^2u}$$$$\phantom{\int\frac{1}{(1+x^2)^2}\,dx}=\int\cos^2u\,du$$Der Rest ist Gymnastik mit Winkelfunktionen:$$\int\cos^2u\,du=\int\left(\cos(2u)+\sin^2u\right)du=\frac{1}{2}\sin(2u)+\int\left(1-\cos^2u\right)\,du$$$$2\int\cos^2u\,du=\frac{1}{2}\sin(2u)+\int du$$$$\int\cos^2u\,du=\frac{1}{4}\sin(2u)+\frac{u}{2}=\frac{1}{2}\sin u\cos u+\frac{u}{2}=\frac{1}{2}\frac{\sin u}{\cos u}\cos^2 u+\frac{u}{2}$$$$\phantom{\int\cos^2u\,du}=\frac{1}{2}\frac{\tan u}{1+\tan^2u}+\frac{u}{2}$$$$\Rightarrow\quad\int\frac{1}{(1+x^2)^2}\,dx=\frac{x}{2(1+x^2)}+\frac{1}{2}\arctan x$$