Aloha :)
Wenn du das gegebene Gleichungssystem mit Hilfe einer Matrix schreibst:$$\left(\begin{array}{c}1 & 1 & -1\\2 & 3 & t\\1 & t & 3\end{array}\right)\cdot\left(\begin{array}{c}x\\y\\z\end{array}\right)=\left(\begin{array}{c}1\\3\\2\end{array}\right)$$gibt es eine eindeutige Lösung genau dann, wenn die Matrix invertierbar ist. Eine Matrix ist genau dann invertierbar, wenn ihre Determinante \(\ne0\) ist. Um die kritischen Werte für \(t\) zu finden, benötigen wir also die Determinante der Matrix. Diese entwickeln wir nach der ersten Zeile:
$$\left|\begin{array}{c}1 & 1 & -1\\2 & 3 & t\\1 & t & 3\end{array}\right|=1\cdot\left|\begin{array}{c}3 & t\\t & 3\end{array}\right|-1\cdot\left|\begin{array}{c}2 & t\\1 & 3\end{array}\right|+(-1)\cdot\left|\begin{array}{c}2 & 3\\1 & t\end{array}\right|$$$$\quad=\left(3^2-t^2\right)-\left(2\cdot3-1\cdot t\right)-\left(2\cdot t-1\cdot3\right)=9-t^2-6+t-2t+3$$$$\quad=-t^2-t+6=-(t^2+t-6)=-(t+3)(t-2)$$Bei \(t=2\) und bei \(t=-3\) ist die Determinante \(=0\), also sind das die gesuchten Kandidaten, für die es keine eindeutige Lösung gibt. Wir betrachten die beiden Kandidaten nun genauer mit Hilfe des Gauß-Algorithmus:
$$\underline{t=2:}\quad\left[\begin{array}{c}1 & 1 & -1&\;1\\2 & 3 & 2&\;3\\1 & 2 & 3&\;2\end{array}\right]\stackrel{\to}{z_3=z_3+z_1}\left[\begin{array}{c}1 & 1 & -1&\;1\\2 & 3 & 2&\;3\\2 & 3 & 2&\;3\end{array}\right]$$Hier gibt es 2 äquivalente Gleichungen, also haben wir für 3 Unbekannte nur 2 Gleichungen. Daher gibt es einen Freiheitsgrad (= eine unbestimmte Variable) und unendlich viele Lösungen.
$$\underline{t=-3:}\quad\left[\begin{array}{c}1 & 1 & -1&\;1\\2 & 3 & -3&\;3\\1 & -3 & 3&\;2\end{array}\right]\stackrel{\to}{z_2=z_2+z_3}\left[\begin{array}{c}1 & 1 & -1&\;1\\3 & 0 & 0&\;5\\1 & -3 & 3&\;2\end{array}\right]$$$$\phantom{\underline{t=-3:}}\stackrel{\to}{z_3=z_3+3z_1}\left[\begin{array}{c}1 & 1 & -1&\;1\\3 & 0 & 0&\;5\\4 & 0 & 0&\;5\end{array}\right]$$
Hier gibt es 2 sich widersprechende Gleichungen, \(3x=5\,\land\,4x=5\), daher ist das System unlösbar.