habe Fragen zur Schreibweise der Lösungsmenge bei einer quadratischen Ungleichung.
Die Intervallgrenzen sind ja die Nullstellen.
Und ich weiß auch, dass bei "größer gleich bzw. kleiner gleich" die Intervallgrenzen mit eingeschlossen werden,
bei nur größer oder kleiner ausgeschlossen werden.
Ich möchte das an einem Beispiel veranschaulichen:
Die quadratische Ungleichung x2 - 6x + 8 > 0 hat die Nullstellen 2; 4
(--> Ich betrachte alles oberhalb der x-Achse, weil "größer 0" stimmt das ?)
IL = ] - ∞ ; 2 [ ∪ ] 4 ; + ∞ [
(Intervallgrenzen = Nullstellen in diesem Fall nicht eingeschlossen)
---> Nun meine Fragen: Wie würde denn die Lösungsmenge aussehen, wenn es lauten würde:
x2 - 6x + 8 < 0
(--> Ich betrachte alles unterhalb der x-Achse, weil "kleiner 0" stimmt das ?)
1. Welche(n) Unterschied(e) zur Schreibweise der Lösungsmenge gibt es hier, wenn es heißt: "kleiner als"
2. Gibt es Fälle, in denen die "Unendlichkeitszeichen ∞ " in der Lösungsmenge weggelassen werden? Wenn ja, welche und wie weiß ich, wann das so ist ?
Danke für die Antworten.