Aufgabe:
Bestimmen Sie die allgemeine Form der Lösung der Differentialgleichung $$ y^{\prime}=\mathrm{e}^{y} \cos x $$ und das maximale Lösungsintervall.
Problem/Ansatz:
$$ \begin{array}{rl}{\frac{d y}{d x}=e^{y} \cos x}&{\cdot d x} \\ {d y=e^{y} \cos x d x} & {\text :{ e }^{y}} \\ {e^{-y} d y=\cos x d x} & {} \\ {\int e^{-y} d y=} & {\int \cos x d x} \\ {-e^{-y}+c_{1}=-\sin x+c_{2}} \\ {-\cdot e^{-y}=-\sin x+c} \\ {y \cdot e} & {=\ln (-\sin x+c)} \\ {y=} & {\frac{\ln (\sin x+c)}{e}}\end{array} $$
Stimmt das soweit? Wie besimme ich jetzt das maximale Lösungsintervall?