Erste Abletung nach Produkt und Kettenregel bilden. Kontrollergebnis \( f'(x) = \frac{ e^{2-x} \ x \ (2 - x) } { 2 } \)
Zweite Ableitung ebenfalls nach Produkt und Kettenregel bilden. Kontrollergebniss \( f''(x) = \frac{ e^{2 - x} \ (x^2 - 4x +2) } {2} \)
Damit gibt es zwei kritische Punkte die aus der Gleichung \( f'(x) = 0 \) folgen, nämlich \( x_0 = 0 \) und \( x_1 = 2 \)
Damit gilt \( f''(0) = e^2 > 0 \), also liegt bei \( x_0 \) ein Minimum vor, nämlich \( f(0) = 0 \) und \( f''(2) = -1 < 0 \), also liegt bei \( x_1 \) ein Maximum vor, nämlich \( f(2) = 2 \)
Die Kurve sieht dann so aus