Hallo,
nach einem Lemma von Gauss gilt für normierte ganzzahliges Polynome \(p\in\mathbb{Z}[X]\):
ist \(p=f\cdot g\) eine Zerlegung von \(p\) in \(\mathbb{Q}[X]\), dann liegen die Faktoren
\(f\) und \(g\) sogar in \(\mathbb{Z}[X]\).
Ist nun \(\alpha\in\mathbb{Q}\) eine Nullstelle von \(p\), so haben wir eine Zerlegung
\(p=(X-\alpha)g\) über \(\mathbb{Q}\), nach Gauss also sogar über \(\mathbb{Z}\), d.h.
\(X-\alpha\in\mathbb{Z}[X]\), also \(\alpha\in\mathbb{Z}\).
Entweder sind also Nullstellen ganz oder irrational; denn wenn sie rational sind, sind
sie ja sogar ganz.
Gruß ermanus