Induktionsanfang: $$n = 1, \prod_{k=0}^{1} (2^{2^k}+1) = 15 = 2^{2^{1+1}}-1$$
Induktionsvermutung: $$\prod_{k=0}^{n} (2^{2^k} + 1) = 2^{2^{n+1}}-1$$
Induktionsschnritt: n -> n+1:
$$\prod_{k=0}^{n+1}(2^{2^k}+1) = \prod_{k=0}^{n}(2^{2^k}+1) \cdot (2^{2^{n+1}}+1)$$
$$= (2^{2^{n+1}}-1) \cdot (2^{2^{n+1}}+1) = (2^{2^{n+1}})^2 - 1 = 2^{2^{n+1} \cdot 2}-1 = 2^{2^{n+2}}-1$$