Hallo Anna,
da f und g in [-1 , 1] keine Schnittstellen haben und Gf oben liegt, ergibt sich die gesuchte Fläche direkt aus
\(\int_{-1}^{1} \! (-x^2+4-0,5x) \, dx=\left[-\dfrac{1}{3}·x^3+4x-\dfrac{1}{4}x^2\right]_{-1}^1\)
\(=\dfrac{41}{12}-\dfrac{-47}{12}=\dfrac{88}{12}=\dfrac{22}{3}=7\frac{1}{3}\)
Gruß Wolfgang