Aufgabe:
Wir wollen eine vierelementige Menge M = {e, b, c, d} betrachten, auf der eine Verknuepfung ’ ∗’ definiert ist, so dass (M, ∗) eine Gruppe ist. O.B.d.A. (ohne Beschraenkung der Allgemeinheit) sei e wieder das neutrale Element. Im Unterschied zu dem Fall, dass es ein Element gibt, das nicht zu sich selbst invers ist, fordern wir nun, dass alle Elemente zu sich selbst invers sind. Koennen Sie mit dieser Information die Verknupfungstabelle vollstaendig ausfuellen, oder gibt es mehrere Moeglichkeiten? Ist/Sind die Gruppe(n), die Sie erhalten, kommutativ? (Auf einen Nachweis, dass die Verknupfung assoziativ ist, soll verzichtet werden.)
Problem/Ansatz:
Leider kann ich mit der Fragestellung nicht viel anfangen. Kann mir auch da bitte jemand helfen?