Aufgabe:
Ich stehe vor folgendem Problem. Ich habe zwei Matrizen A,B ∈Kn,n gegeben.
Nun will eine invertierbare Matrix S ∈Kn,n finden, sodass diese Gleichung:
B=S⋅A⋅S−1
erfüllt ist.
Beispielsweise wäre für diese zwei Matrizen A=(8−621) und B=(−28−617637) mit S=(1061) diese Gleichheit erfüllt, denn:
(−28−617637)=B=S⋅A⋅S−1=(1061)⋅(8−621)⋅(10−61).
Hier habe ich mir zuerst A und S ausgedacht und dann das Ergebnis als B definiert. Aber wie kann ich nun andersherum S erhalten, wenn ich nur A und B gegeben habe?