y´ * sin (x) = - cos (x) * y(x) - x^(1/2)
y´ * sin (x) + cos (x) * y(x) = - x^(1/2)
homogene Gleichung:
y´ * sin (x) + cos (x) * y(x) = 0
y´ * sin (x) = - cos (x) * y(x)
dy/dx * sin (x) = - cos (x) * y(x)
dy/y= -cot(x)
ln|y| = -ln|sin(x)+C
|y|= e^(-ln|sin(x)+C)
|y| = 1/sin(x) * e^c
y = 1/sin(x) * ± e^c
yh= C1/sin(x)
Setze C1=C(x)
yp=C(x)/sin(x)
yp'= C'(x) *1/sin(x) -C(x) Cos(x)/sin^2(x)
----->yp und yp' in die DGL einsetzen:
C'(x)= -√x
C(x)= (-2)/3 x^(3/2)
->
yp=C(x)/sin(x)
yp= 1/sin(x) *(-2)/3 x^(3/2)
y=yh+yp