Aloha :)
$$(x^2-7x+11)^{(x^2-13x+42)}=1$$
1. Fall: \(y^0=1\)
Die Nullstellen der Exponent-Parabel erfüllen also die Gleichung:$$0\stackrel{!}{=}x^2-13x+42=(x-6)(x-7)\quad\Rightarrow\quad \underline{x_1=6}\;\;;\;\;\underline{x_2=7}$$Da \(0^0\) nicht definiert ist, prüfen wir sicherheitshalber noch, ob die Basis-Parabel an diesen Stellen \(\ne0\) ist:$$x_1^2-7x_1+11=6^2-7\cdot6+11=5\ne0$$$$x_2^2-7x_2+11=7^2-7\cdot7+11=11\ne0$$
2. Fall: \(1^y=1\)
Die Stellen, an denen die Basis-Parabel \(=1\) wird, erfüllen also die Gleichung:$$x^2-7x+11=1$$$$x^2-7x+10=0$$$$(x-5)(x-2)=0$$$$\underline{x_3=5}\;\;;\;\;\underline{x_4=2}$$
3. Fall: \((-1)^{2n}=1\;,\;n\in\mathbb{Z}\)
Wir suchen also die Stellen, wo die Basis-Parabel \(=-1\) wird und prüfen, ob die Exponent-Parabel für die gefundenen Werte eine gerade Zahl ist:$$x^2-7x+11=-1$$$$x^2-7x+12=0$$$$(x-3)(x-4)=0$$$$\underline{x_5=3}\;\;;\;\;\underline{x_6=4}$$Prüfung der Expoent-Parabel:$$x_5^2-13x_5+42=3^2-13\cdot3+42=12\quad\checkmark$$$$x_6^2-13x_6+42=4^2-13\cdot4+42=6\quad\checkmark$$
Die Lösungsmenge ist daher: \(L=\{2,3,4,5,6,7\}\).