Ich bin mir nicht ganz sicher. Hätte das aber wie folgt gelöst: https://docs.google.com/document/d/11SV36jnfS39m1V5xJ58TYg97-h3kB38dDM1eTrrcKlA/pub
Trigonometrische Gleichung
8·SIN(x^2) - 2·COS(x^2) = 1
Substitution: z = x^2
8·SIN(z) - 2·COS(z) = 1
Umformen: a·SIN(z) - b·COS(z) = √(a^2 + b^2)·SIN(z - ARCTAN(b/a))
√(8^2 + 2^2)·SIN(z - ARCTAN(2/8)) = 1
√(68)·SIN(z - ARCTAN(2/8)) = 1
SIN(z - ARCTAN(2/8)) = 1/√(68)
z - ARCTAN(2/8) = ARCSIN(1/√68)
z = ARCSIN(1/√68) + ARCTAN(2/8)
z1 = 6.97° + 14.04° = 21.01°
z2 = 180° - 6.97° + 14.04° = 187.07°
x1 = ± √21.01 = ± 4.584
x2 = ± √187.07 = ± 13.68