Y / X = C · X · ( 1 +y^2 / X^2 ) | · X^2
<=> Y = C · X^2 · ( 1 + y^2 / X^2 )
<=> Y = C ·( X^2 + y^2 ) | · 1/C
<=> Y / C = X^2 + y^2 | - X^2
<=> Y / C - X^2 = y^2 | - Y/C
<=> - X^2 = y^2 - Y/C quadr. Ergänzung
<=> - X^2 + 1 / (2C) = Y^2 - Y/C + 1 / (2C)
<=> - X^2 + 1 / (2C) = ( y^2 - 1 / (2C) ) ^2